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Abstract

Granular collisions are characterized by a threshold velocity, separating the low-velocity regime of grain sticking from
the high-velocity regime of grain bouncing: the bouncing velocity, vb. This parameter is particularly important for
nanograins and has applications for instance in astrophysics where it enters the description of collisional dust
aggregation. Analytic estimates are based on the macroscopic Johnson-Kendall-Roberts (JKR) theory, which predicts
the dependence of vb on the radius, elastic stiffness, and surface adhesion of grains. Here, we perform atomistic
simulations with model potentials that allow us to test these dependencies for nanograin collisions. Our results not
only show that JKR describes the dependence on materials parameters qualitatively well, but also point at
considerable quantitative deviations. These are the most pronounced for small adhesion, where elastic stiffness does
not influence the value of the bouncing velocity.
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Background
Arguably, the most basic process of granular mechanics
is the collision of two grains. At large grain velocities,
grains separate again after the collision, and the collision
outcome can be characterized by the classical mechan-
ics of inelastic collisions. At small grain velocities, how-
ever, grains will stick. The boundary between sticking
and bouncing collisions [1] may be termed the bounc-
ing velocity, vb. This parameter is particularly important
for nanograins and has applications for instance in astro-
physics where it enters the description of collisional dust
aggregation [2, 3].
Macroscopic contact mechanics has been used to derive

a prediction for vb. It is based on the Johnson-Kendall-
Roberts (JKR) theory [4], which describes the collision of
two adhesive spheres using the elastic stiffness and the
surface adhesion as basic physics input. Quantitatively,
these quantities are described by the indentation modu-
lus, Eind = E/(1 − ν2), where E is the Young modulus
and ν the Poisson number, and by the surface energy γ .
With the sphere radius R and the mass density ρ, the
bouncing velocity of two identical spheres reads [1, 5, 6]
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The value of the constant C depends strongly on the
assumptions of energy dissipation during the collision and
has been discussed to assume values between 0.3 and
60 [1, 7].
The validity of this prediction has been predominantly

studied with respect to its size dependence [1, 5–8].
With decreasing grain size, adhesive forces become more
important, and the bouncing velocity increases. Indeed,
experiments on nanograins (Ag and NaCl grains) [9]
find vb to be in the range of 1 m/s for grain sizes of a
few 10 nm, but to increase sharply for smaller grains.
Atomistic simulations based on molecular dynamics
(MD) have confirmed the predicted R−5/6 dependence
for collisions between amorphous silica grains of sizes
R = 15–25 nm [7].
Up to now, the predicted dependence of vb on the mate-

rials parameters Eind and γ has not been tested in detail.
This is not easily done in experiment, since differentmate-
rials differ usually in both quantities. However, using MD,
we can construct model materials, which have identical
properties, but differ only in one aspect, either Eind or γ .
In this paper, we choose a model for Cu [10] but vary
the materials parameters generously by up to one order of
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magnitude from the real values. Since we find no bounc-
ing for amorphous nanoparticles in this system, we focus
on crystalline (fcc) grains.

Methods/Experimental
We use the Morse potential,

U(r) = D
[
e−2α(r−r0) − 2e−α(r−r0)

]
, (2)

to describe the interaction between two atoms of distance
r. The threeMorse parametersD, α, and r0 are determined
to describe the lattice constant a, the bulk modulus B, and
the cohesive energy Ecoh of a bulk fcc solid.

For definiteness, we fix the lattice constant to a = 3.615
Å (appropriate for Cu) in this study and also adopt the
atomic mass of Cu, in order to keep the mass density ρ in
Eq. (1) fixed. The potential is cut off at rc = 2.5a; thus,
12 neighbor shells, including a total of 248 atoms, interact
with each atom. A number of 100 potentials are evaluated
for B in the range of 403 to 1008 GPa, and Ecoh in the range
of 0.35 to 3.54 eV. Note that the bulk moduli studied here
are larger, and the cohesive energies are smaller, than the
values of real Cu (B = 134.4 GPa, Ecoh = 3.54 eV [11]),
since for the real values, we did not observe any bouncing.
We determine the indentation modulus Eind for uni-

axial stress in (100) direction from the Young modulus
and the Poisson number in this direction ([12], p. 32).

a

b

Fig. 1Materials parameters. Dependence of a the indentation modulus Eind on the bulk modulus B and of b the surface energy γ on the cohesive
energy Ecoh
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Fig. 2 Initial setup of the collision

Figure 1a displays the dependence of Eind on B. We see
that these quantities obey a linear relationship; at constant
bulk modulus, a decrease of the cohesive energy lets Eind
increase.
The surface energy of (100) facets is calculated from the

energy difference of a bulk crystal and a crystal with an
open (100) surface by dividing through the area of the
open surface [13]. Figure 1b shows that γ is roughly pro-
portional to Ecoh; deviations are only visible for smaller
stiffnesses and strongly bonded materials.
We construct grains by cutting a sphere with radius R =

9a = 33 Å out of the fcc lattice, containing around 12,000
atoms. Due to their construction, they have a facetted
surface. They are relaxed in order to equilibrate their sur-
faces; slight surface relaxation, but no reconstruction of

the surface was observed. The collisions are started by
duplicating the grains and shooting them towards each
other with a relative velocity v. Only central collisions
are considered, where the two facing (100) facets collide
head-on, see Fig. 2.
For determining the bouncing velocity, we perform col-

lisions with several velocities. The algorithm used here
is based on a simple bisection scheme. We verified that
collisions with a velocity of 250 m/s are bouncing for all
collision systems studied here, while at vanishing velocity,
collisions are sticking. Then, simulations are run at the
arithmetic mean of the lowest known bouncing velocity
and the highest known sticking velocity. This procedure
is repeated until the difference between the highest stick-
ing and the lowest bouncing velocity is less than 10% of

Fig. 3 Bouncing velocity. Three-dimensional plot of the dependence of the bouncing velocity vb on the indentation modulus Eind and the surface
energy γ
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their mean value. vb is taken as the arithmetic mean of the
highest sticking velocity and the lowest bouncing velocity;
these two latter values are also taken to indicate the error
of our computation in the plots. The simulations were per-
formed using the open-source software LAMMPS [14],
and the code is essentially the same as that used in our
previous studies on collisions of silica [7] and water-ice
particles [15].

Results
Figure 3 gives an overview over the results obtained. An
overall power-law fit is provided by

vb ∝ γ 0.588E−0.155
ind . (3)

Thus, themain characteristics of the JKR law, Eq. (1)—an
increase of vb with adhesion and a decrease with elas-
tic stiffness—are reproduced, but the dependencies are
weaker than those in the JKR case.
Figure 4 looks in more detail into these dependencies.

Since we determined the bouncing velocities for materials
with either fixed B or Ecoh, we will analyze them for these
fixed values, but present the dependencies in terms of Eind
and γ in order to make connection with the JKR predic-
tion, Eq. (1). For constant cohesive energy Ecoh, vb depends
like a power law on the elastic stiffness,

vb ∝ E−a
ind, (4)

where a = 0.28 (0.26, 0.02) for Ecoh = 3.54 (2.12, 0.35) eV.
Thus, the exponent a = 0.33 predicted by JKR is indeed
nearly recovered for high surface energies; however, the
dependence becomes softer with decreasing γ and van-
ishes altogether for weakly adhesive surfaces. Note that
in the case of vanishing surface energy, all collisions must
be bouncing; this explains the vanishing role of the elastic
stiffness in this case.
Figure 4c displays the power exponents of the depen-

dence of vb(Eind), Eq. (4), obtained from our simulations.
The plot clearly demonstrates the increase of the depen-
dence on Eind with increasing cohesive energy, and hence
surface energy, as indicated by the red linear fit line.
For fixed elastic stiffness, B, the dependence of vb on

γ shows a simpler picture, see Fig. 4c. Power-law fits,
vb ∝ γ −b, give rather consistent values of b = 0.67 (0.59,
0.53) for B = 403 (739, 1008) GPa, and thus show only a
mild dependence on B and hence Eind. Note, however, that
these dependencies are softer than the value of b = 0.83
predicted by Eq. (1). With increasing stiffness, the devia-
tions from the JKR prediction become stronger. Indeed,
it is known that JKR fails for too stiff systems [16, 17].
For such systems, the Derjaguin-Muller-Toporov (DMT)
theory [18] is thought to apply better; however, no pre-
diction for the bouncing velocity seems to have emerged
from that theory.

a

b

c

Fig. 4 Bouncing velocity. Dependence of the bouncing velocity vb on
the a indentation modulus Eind and the b surface energy γ . Lines
denote power-law fits. c displays the dependence of the power
exponent, a, Eq. (4), on the cohesive energy. The line denotes a linear
fit to guide the eye
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Overall, the bouncing velocities found here are below
100 m/s. We emphasize that for realistic values of the
Morse potential as appropriate for Cu, we find stick-
ing over the entire range of velocities, and no bounc-
ing. This is in line with recent simulations of Cu
sphere (7–22 nm diameter) collisions with an Al sur-
face performed by Pogorelko et al. [19, 20] who find
sticking up to velocities of 1000 m/s. The reason we
do find bouncing in our simulations is that we
use model potentials in which the elastic moduli
are generously increased, and the surface binding is
decreased, with respect to the values characterizing
real Cu.
Above the bouncing threshold, collisions are character-

ized by the coefficient of restitution,

e = |v′|/|v|, (5)

which compares the relative velocity after collision, v′, to
that before the collision, v, and thus measures the inelas-
ticity of the collision. For sticking collisions, evidently,
e = 0. JKR theory suggests a law [4–6]

eJKR = α

√
1 −

(vb
v

)2
, (6)

where we introduced the factor α to take energy dissipa-
tion into account [7].
Figure 5 displays two cases of the velocity dependence

of e; we find these to be representative for the entire range
of stiffness and adhesion values investigated. In all these
cases, there is nomajor energy dissipation during the colli-
sion; α is around 0.9. At sufficiently large surface energies,
Fig. 5a, e follows quite well the JKR prediction, Eq. (6). At
small γ , however, Fig. 5b, a narrower transition zone is

a

b

Fig. 5 Coefficient of restitution. Dependence of the coefficient of restitution, e, on collision velocity, v, for a strongly (γ = 2.32 J/m2) (a) and a weakly
(γ = 0.89 J/m2) (b) adhesive surface. The bulk modulus is identical in both cases, B = 940.8. Symbols denote simulation results, while the curve is a
fit to the JKR prediction, Eq. (6), with α = 0.86 (a) and 0.95 (b)
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seen, in which e switches from 0 to almost 1; this transition
zone is not well described by the JKR prediction, Eq. (6).

Discussion
In the sticking regime, the coefficient of restitution stays
below 1 indicating inelastic energy losses during the col-
lision. We verified that the collisions are purely elastic in
the sense that no permanent plasticity was generated dur-
ing the collision; the software tool OVITO [21] was used
to check for dislocation production. For higher veloci-
ties, v > 100 m/s, and compliant spheres, dislocations
were formed transiently but disappeared again after the
collision. We note that during the collision of similarly
sized crystalline nanospheres interacting via the generic
Lennard-Jones potential, ample dislocation production
could be detected [22, 23], while shear transformation
zones were identified in the collision of amorphous silica
spheres [7], both collision systems thus exhibit plasticity.
In our case, the high elastic moduli prevent the establish-
ment of plastic deformation; inelastic energy losses are
caused only by the excitation of vibrations in the collided
spheres. It may be concluded that the existence of bounc-
ing collisions is connected to a suppression of inelastic
losses during the collisions and thus to the suppression of
plastic deformation.
The behavior of e for small γ underlines our above

findings for vb that large deviations from JKR are exhib-
ited for weakly adhesive systems. We conclude that for
weak adhesion, the bouncing velocity, and also the state
of the system after bouncing depend only weakly on other
system characteristics, such as Eind and v.

Conclusions
The prediction of the JKR theory of adhesive elastic con-
tacts has been tested by dedicated MD simulations of
nanograins using model potentials. We find that the gross
trends of the dependence of the bouncing velocity are
reasonably well reproduced by JKR theory when vary-
ing the material stiffness and the material adhesion by
up to an order of magnitude. However, we find system-
atic deviations for weakly adhesive grains; in this case, the
bouncing threshold becomes independent of the material
stiffness, and the coefficient of restitution exhibits almost
no velocity dependence above vb. Also for stronger adhe-
sion, the dependence of the bouncing velocity on γ is
systematically smaller than that predicted by JKR.
These deviations point at an incomplete description

of nanoparticle collisions by macroscopic contact theory.
Future work will attempt to extend this study to crystalline
grains with other orientations and with larger radii, and to
amorphous grains.
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